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1. Phys. A: Math. Gen .  22 (1989) 4895-4920. Printed in the U K  

Coherent structures in strongly interacting many-body systems: 
11. Classical solutions and quantum fluctuations 

J M Dixonf and  J A Tuszynski$ 
f Department of Physics, University of Warwick, Coventry CV4 7AL, U K  
f Department of Physics, UniLersity of Alberta, Edmonton,  Alberta, Canada  T6G 2J1 

Received 25 April 1989 

Abstract. In the preceding paper  we have considered a second-quantised Hamiltonian 
which can be used to model a large number of important strongly interacting many-body 
systems. We have shown that the dynamics of such systems can be described exactly using 
quantum fields. The equations of motion derived in this way are  highly non-linear partial 
differential equations ( P D E ) .  In the present paper we use a s tandard field theoretical 
approach where initially the fields are  treated as  classical functions. We focus on the 
solutions of these equations which may be obtained remarkably and  perhaps surprisingly, 
making full use of very recent mathematical  discoveries ( the symmetry reduction method) .  
In this work we find exact solutions of the equations of motion for the classical field for 
each of the four  main cases separately found in the preceding paper.  These cases may 
correspond to different physical situations a n d  the last, the  second-order case, corresponds 
to the most general physical situation. Subsequently we will outl ine possible quantisation 
procedures for these fields. We then briefly discuss the type of boundary conditions which 
may be applied to both the classical field and  the quantum fluctuations which arise. 

1. Introduction 

Tuszynski and Dixon (1989, hereafter referred to as I )  has been concerned with strongly 
interacting many-particle systems which can be described using the following second- 
quantised Hamiltonian: 

This effective Hamiltonian has been shown to play a prominent role in describing a 
large number of diverse physical phenomena, especially those associated with symmetry 
breaking or critical behaviour. It may be used for both bosons and fermions and, in 
some cases, it can be derived from more complex Hamiltonians which involve interac- 
tions between several types of particles. 

The method adopted to deal with the model system consisted in first finding 
equations of motion for second-quantised operators ( q r ,  4;). These were then re- 
expressed in terms of a suitably defined quantum field operator @. Then interaction 
constants were expanded in Taylor series of powers of momentum components with 
respect to a special point in reciprocal space. Since our interest lies in the vicinity of 
symmetry breaking this special point is so chosen as to correspond to a local energy 
minimum at a fixed point of the Hamiltonian. Based on this procedure we have 
distinguished four separate cases. 
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( a )  The non-interacting case, where the equation of motion is a linear Schrodinger 
equation with a dispersive term. 

( b )  The zero-order case where the equation of motion can be written as the cubic 
non-linear Schrodinger equation. 

( c )  The first-order case where the equation of motion is a generalised non-linear 
Schrodinger equation with additional non-linear terms involving $,'$G& 

( d )  The second-order case where, in addition to the terms in ( c ) ,  we find terms 
proportional to (V,$') $(G,$) and (Vf$,')$+. 

In the general situation anisotropic interactions are manifested by the presence of 
the signature E on the V, and G: operators, as well as additional residual terms which 
involve cross derivatives of the independent variables. I f  all three spatial directions 
are equivalent either in a fully spherical or cubic geometry these latter terms will 
disappear and  the Laplace-Beltrami operators V:, as well as the gradients C,, become 
the standard Laplacian and  gradient, respectively. 

Following standard methods in quantum field theory (Jackiw 1977, Rajaraman 
1987) we proceed to solve the equations derived in I assuming that in the immediate 
vicinity of the critical point the classical part 4 of the quantum field $ dominates 
(Amit 1978, Ma 1976). Quantum fluctuations may be obtained by linearising & about 
the classical solution 4 of the equation of motion. 

The next four sections will be devoted to seeking classical solutions of the field 
equations in cases ( U ) - (  d ) ,  respectively. These results have been obtained using the 
symmetry reduction method and they account for all continuous symmetries in both 
the Euclidean and Minkowski multidimensional spacetimes (Gagnon and Winternitz 
1988, 1989a, b, Winternitz er a1 1987). Those equations appearing both in ( c )  and ( d )  
will be solved by making a special ansatz where V,$ is represented as a function of 
9. This allows a mapping to be made between these cases and those analysed earlier. 

In 9 6 the results of quantisation of the classical fields are analysed. This takes 
into account the various possible geometrical symmetries of the latter as required by 
the boundary conditions. Those classical fields which are spatially extended may be 
quantised either through the imposition of periodic boundary conditions or through 
an  h expansion or linearisation. This may bring about band formation in the excitation 
spectra when the effective potential, after linearisation, is periodic. For localised 
solutions of the classical field equations quantum fluctuations may be found as bound 
states in a corresponding linearisation procedure while scattering states, which may 
also exist in general, highlight the limited stability of the coherent structure. 

In the concluding section we discuss some interesting extensions of this work such 
as the separatrix effect, where quantum fluctuations in a periodic potential may blur 
the distinction between localised and  free states. The constraint of conservation of 
particle number and the reintroduction of a particular type of statistics will also be 
discussed. 

2. The non-interacting case 

As shown in I the equation for the classical field operator 4 is 

i h a , 4 =  v ,4+ iv I  * ( Y ~ & ) - ~ v : &  

where all the parameters have been defined previously and the coordinates in this 
equation are related to  the original coordinates through a rotation and scaling. First 
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of all, the gradient term can be transformed away through a Galilean transformation, 
namely 

t’= t x: = x, - C , t  i = l , 2 , 3  

where the propagation velocity is so chosen that -hv, = ( v i ) ,  E , .  Keeping in  mind that 
the new coordinates are really primed, the equation becomes 

iha ,4  = vo4 -$V:d. ( 3 )  

Second, we can separate the time from the space variables by writing 

4 = u(t)f(r). (4) 

Substituting into ( 3 )  we find 

U = uo exp( - i tA / h ) (5) 

where A is an  arbitrary separation constant and U,, is also arbitrary. The spatial equation 
resulting is 

Vf+ Of = 0 (6) 

with s2 = 2 ( A  - vo) which can be both positive or negative, giving rise to either the 
Helmholtz or a diffusion-like equation. Both cases are very well known and detailed 
analyses can be found in many textbooks. There are three important coordinate systems 
in which (6) is readily solved through separation of variables, namely Cartesian, 
spherical polar and cylindrical coordinates. 

It is straightforward to show in Cartesian coordinates that, i f f =  X ( x )  Y ( y ) Z (  z ) ,  
solutions of a similar form are obtained for each of X ,  Y and 2 in their respective 
independent coordinates, each having, in general, a different separation constant p. 
For example X ” =  p , X  and the full solution d takes the form 

3 

+ = U ,  { A ,  exp[p/l,’”(x,-u,r)]+B, exp[-,u: ‘( .~,-v,r)]}exp(-itA/h) ( 7 )  
, = I  

where A, and B, are arbitrary constants which may be fixed by imposing particular 
boundary conditions and  p, are the separation constants. When a particular p, > 0 
the term in braces in ( 7 )  either exponentially increases or decreases with the spatial 
coordinate. However, for a fixed spatial coordinate, depending on the sign of the 
velocity c,, again one term will increase and the other decrease with time. If p, < O  
all the terms correspond to oscillatory functions in time and space. 

In  spherical polar coordinates we put f =  R (  r )O(  e)@(  4 )  and (6) again separates. 
The angular part of the solution produces spherical harmonics YY(0,  4 )  while the 
radial component is 

R = r ’ ‘Z,,, J R t ’  ’) (8) 

where Z is a Bessel function (Magnus et a1 1966). I f  O >  0 the above Bessel function 
decays with increasing r but if n< 0 a Bessel function with an  imaginary argument 
results, so depending on the type, 1, or K ,  , it will either diverge or decay for large r, 
respectively. However, when r is small and  Cl < 0, K ,  will diverge and I ,  tend to zero 
as r“ where the minimum value of v in ( 8 )  is v = $ .  
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One should note that the independent variables r, 8, 4 are actually functions of 
time because of our initial transformation, i.e. 

Hence, for large times and fixed coordinates, both angles will approach constant values 
Bo and c $ ~  and r becomes very large. Since the indicated time dependence originates 
from the presence of the gradient term in the original equation we can interpret it as 
a directional source which makes the solution tend asymptotically to a unidirectional 
form parallel to v I  . 

The procedure for cylindrical polar coordinates is analogous and we put f =  
P (  p)O(  4)  U (  z), and find that O = exp( F im4) ,  U = exp( TIz), and 

P=Zm[(I:+R)1’2p)].  ( 9 )  
Once again, the independent variables p, 4 and z are time dependent and we can 
conclude, in a similar way to the previous case, that the gradient term drives the system 
into a fixed direction. 

The analysis presented in this section has been very straightforward and no surpris- 
ing results have been obtained. In general, we can see three types of behaviour, namely: 
oscillatory, damped oscillations and exponential decay which may be realised in three 
different symmetries. None of these solutions, however, exhibit spatial localisation 
(free of dispersion) which characterises coherent structures. The latter are known to 
be associated with critical behaviour in many systems. This motivates us to consider 
the next level of complexity where non-linear terms begin to appear and play a major 
role. 

3. The zeroth-order case 

The non-linear Schrodinger (NLS) equation in (1 + 1)-dimensional spacetime is a well 
known example of an integrable system and, as such, admits soliton-like solutions, 
both single and multiple. It  has been extensively studied in the past (see, for example, 
Scott er al 1973, Bullough and Caudrey 1980, Lamb 1980, Ablowitz er al1981). Without 
loss of generality we can use the form 

i4, + k + 4 1 ICI = 0 (10) 
since all the parameters in (12)  below can be absorbed by scaling independent variables 
and the linear term can be eliminated by a gauge transformation $-  4 exp(iAr). For 
4 > 0 N-envelope soliton solutions exist (Hirota 1976) with a single soliton in the form 
of a bell-type sech function. In the 4 < 0 case multisoliton solutions have a kink shape 
with a single soliton envelope proportional to the tanh function. Boyer er a/ (1976) 
performed a symmetry reduction analysis of the (1 + 1)-dimensional Schrodinger 
equation with an arbitrary non-linearity. A particularly interesting physical case is 
that with the envelope depending on 5’ = x - u1  r and the carrier wave depending on 
& = x - u2r (see (13) below). This situation has been studied by Tuszyliski er a1 (1987). 
A curious property has been discovered that the envelope velocities for solitary-wave- 
like solutions form two bands separated by a gap of forbidden velocities, reminiscent 
of electronic bands in periodic solids. 
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The simplest way of introducing interactions between the quasiparticles is to assume 
that the interaction term is a constant, keeping all terms up to second order in the 
one-body coupling constant. This gives the following equation: 

(11) 
Using a Galilean transformation similar to that in $ 2 the equation can be brought to 
the form of the standard non-linear (cubic) Schrodinger equation: 

i h a , + =  v ,++ iu ,  - ( ~ ‘ , + ) - I ~ ~ + + n f ( m ,  k o ,  md++++. 

iha,J/ = v o $ - f V z $ +  F,,+,’++ (12) 
where FO= Rf(r lo ,  ko ,  md. 

The objective of this section is to extensively analyse the symmetries and possible 
explicit solutions for both the signatures ( E )  appearing in (12). 

3.1. Euclidean signatures (+, +, +) 

Although the NLS in more than (1  + 1)  dimensions is not integrable, there exist analytical 
techniques which allow one to find special types of exact solution so we can treat these 
cases as ‘partially’ integrable, i.e. integrable when extra symmetry or boundary condi- 
tions are imposed. First of all, in Euclidean space ( E  = +, +, + )  this equation has 
recently received considerable attention and  the results of symmetry reduction have 
been published in a series of papers by Gagnon and Winternitz (1988, 1989a, b)  in 
great detail. The method of symmetry reduction for P D E  has been described fully in 
a number of books (Olver 1986, Bluman and  Cole 1974, Ovsiannikov 1982, lbragimov 
1985), as well as in a large number of papers in the literature. The method is completely 
algorithmic and it can be straightforwardly applied in any given case. The main four 
steps are essentially the following. 

( i )  Finding the symmetry group of the PDE in question and the Lie algebra of the 
infinitesimal generators of these symmetry transformations. 

( i i )  Classifying all the subalgebras and all subgroups having generic orbits of 
codimension one in the space of independent variables. Similar procedures exist for 
finding the subalgebras and subgroups with generic orbits of higher codimension. 

( i i i )  The invariants of each subgroup are subsequently found so that by solving a 
system of first-order PDE one  can find the symmetry variables € and the prefactors for 
each of the subgroups. Consequently the PDE is reduced to an ODE for the envelope 
in the case of orbits with codimension one. In higher codimensions this leads to P D E  

with a smaller number of independent variables. 
(iv) Finally the reduced equations are investigated using various techniques such 

as the Painleve technique (Ince 1956) and in many cases explicit solutions may be 
obtained. In those cases where the ODE fail the PainlevC test one can resort to numerical 
integration techniques to obtain solutions for specific types of initial conditions. Even 
when numerical or approximate schemes have to be resorted to, symmetry reduction 
reveals the inherent symmetries and topologies and  therefore provides an  important 
physical insight into the many-body system which is being described. Here we only 
present the main features of the analysis of Gagnon and Winternitz (1988, 1989a, b). 
In  table 1 the reductions of (12) to an O D E  (ordinary differential equation) are 
summarised. This means that the solutions sought take the form 

+(A 0 = a ( x ,  t I f ( 5 )  with f(5) = M ( 5 )  exp( ix (5 ) ) .  (13) 
Hence, the envelope f (5 )  and the carrier wave ~ ( 5 )  depend on only one variable, 
namely 5 = e(x, t )  which is called the symmetry variable, and the form of the prefactor 
a ( x ,  t )  can be found for each symmetry variable separately. 
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Table 1. Solutions having generic orbits of codimension one in the space of independent 
variables (x, y ,  z, 1 )  having the form x(x, I )  = a ( x ,  i ) f ( . f ) , f ( . f )  = M ( g )  exp (ix ( 6 ) )  (follow- 
ing Gagnon and Winternitz 1988). 

Solution 
number a ( x ,  I )  5 X 

exp[i(aO - bt ) ]  

exp( - ia t )  

exp(-ibt) 

( - I / '  exp [ i ( -a,( 

2- 

41 
+-+aB-:b In I 

2-I  exp[-i(a,,t 

a0 + b In r ) ]  

= (ao -  b ) M  + a I  M' 

a 2 0, b E R 

= a0 M + a I  M' 

a>O 

M-5 
M' 

= (a,  - a ) M  + a l  M' 

a c R  

s' 2 
M - L + - M + b M  

r 4 M 3  r 

= a,M + a,  M 

b c R  

Third order 

a z 0 , h s O  

Third order 

+ ( 2 - a ' t 2 ) M  = a ,  M' 

a 2 0 , b a O  

S i  
45' M + 45'M - 4 5 7  

M 
exp[i(-a,)t I /P '  

7 ( - 1 / 2  

+ a B - l b l n  I ) ]  

= a I  M' 

a a 0 , b s O  

8 exp i--a,,t 1 / 2 2  Third order, h 3 0 

exp[ - i (a lJ i  I /  2' Third order, b 3 0 I - I / z  9 

+ I b  In I ) ]  

10 P exp[- i (a l l t  a I n p + B  b=O (a '+  l)u - ( a ' +  I ) M - '  

x = S,, M-' x exp[4a t / (a2  + 1 )IS; 

-I 

I + b I n p ) l  
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Table 1. (continued) 

Solution 
number (I(% r )  

x exp[2a{/ia2+ 1 I] d €  

+ xo 0 2 0 ,  b2zO 

-2a.w + M = a ,  M’ 

Third order. h 2 0 

Third order ,  h a  0 

We now make some comments on the solutions in table 1 which have generic orbits 
of codimension one. Number 3 describes an  axial and time-independent envelope and  
no  damping is present in the prefactor a. Similarly number 2 presents again an  axial 
envelope but accelerating along the z axis ( z  - 1 ’ )  with no reduction in its amplitude. 
Numbers 8 and  9 are also axial but they accelerate along the z axis with a time 
dependence t’”’ and their amplitude is damped in proportion to t -” ’ .  Number 11 is 
analogous except propagation is along the y axis. There are also some cylinderical 
solutions, namely numbers 5 and 7 ,  where p is proportional to i.e. expanding. As 
expected, their amplitudes are reduced in proportion to t - ’ ’ ? .  On the other hand, the 
cylindrical solution in number 1 is stationary and has a constant amplitude. There are 
two spherical solutions, i.e. numbers 4 and  12, one stationary and undamped and  one 
expanding with 1”’ and damped as Number 6 represents a stationary cone 
whose amplitude diminishes as z-l. The other (number 10) describes a spiral surface 
parallel to the z axis and  its amplitude is reduced according to p - ’  as it unwinds. 

In  table 2 we have summarised solutions with generic orbits of codimension two. 
Number 10 gives just a (1 + 1 )-dimensional Schrodinger equation. Hence, the solutions 
will be non-linear plane waves along the z-axis. A somewhat similar situation can be 
found in number 4 except the plane surface given by &, undergoes a rotation as t 
increases, somewhat like a moving domain wall. Furthermore, number 6 exhibits 
three-dimensional tilting plane waves. Time-independent reduction can be found in 
number 9 and  the equation has the form of a complex non-linear Klein-Gordon 
equation in the xy plane. A very similar situation is described by number 5 except 
one of the independent variables accelerates with time. Cylindrical and spherical 
time-dependent reductions were obtained in number 8 and  1 ,  respectively. There are 
several cases with cylindrical symmetry, either stationary as in number 2 or with a 
time-dependent variable as in numbers 3 and 7.  In the latter case we also note the 
acceleration along the z axis. 

The remaining four cases, i.e. numbers 11-14, are rather more difficult to interpret 
since each of the symmetry variables 5, and describes a different surface. In number 
11 we see expanding cylinders and stationary cones and  in numbers 12 and  14 we 
have expanding cylinders and  stationary spiral surfaces, while in number 13 cones and  
spiral surfaces, both of which are stationary. As the reader will easily verify, damping 
terms appear only in the last four cases. 

Obviously, of particular interest are such solutions which can be represented as 
explicit analytical functions of the independent variables. We have carefully re-grouped 
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Table 2. Solutions having generic orbits of codimension two in the space of independent 
variables (x, J, 2,  t i ,  reducing to a P D E  in two variables, having the form ~ ( x ,  t )  = (tl, 
a ( x ,  0 (following Gagnon and  Winternitz 1988). 

Solution 
number nlx, 1 1  Cl E: 1'l)t 

a , , , , / t - -  1 a,, I + ( 1 +$)d,J 

e = t a n - '  I ~ / . Y I  

3 espl ai01 t + b O = €  P 

5 exp[:iar~ 3.: - at' I] 

a (  bx - yr)  
E=- +: 

r ' - b ' + c r  

1 6' 

P P  
a,,,, r + - a,,.r - f 5 =:-- jar '  

I P 

= a,,/'+ a,/'/./:' 

b z 0  
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Table 2. (cont inued)  

Solution 
number aix,  I) 51 E: 1'111 

10 1 1 

11 rxp[l!ati - U o l  l ' p -  1 - 1  : 

- j h  In 1 1 1  

: / p  

a I n u t B  

such solutions into five main groups according to their physical form. Within each 
group the reader will also find a number of specific functional dependences. These 
are as follows. 

( i )  Spatially homogeneous solutions (mean f ie ld)  

$ ( r ,  t )  = Go exp(-ibr). 

(ii) Unidirectional quasilinear solutions 

$ ( r ,  t )  = I L ~ ) P ~ ~ ( ~ ~ T  + d2) exp(iiat.rl) 

where the symmetry variable is q = 3 z  -at' and P , ,  is a Painlevi transcendant (Ince 
1956). 

(iii) Solutions with cylindrically symmetric envelopes 

$ ( r ,  t )  = $ o p - " 3 F ( 0  exp[i(c3e+d)t+gj(5))1 
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where the symmetry variable is 5 = 0 , ~ ~ ’ ~  + b 3 ,  the function F can be any of the 
following forms and g 3 ( [ ) ,  in each case, can be found in the original papers: 

where cn(v, k ) ,  sn(7, k ) ,  tn(r], l/v‘?) and d n ( q  l/d) are Jacobi elliptic functions with 
modulus k or its special value l / v 5 ,  as indicated. 

CL(c t )  = CLoH(w) exp[i(c4t+g4(w))l .  

(iv) Stationary z-dependent solutions 

In  this case the symmetry variable has the form w = a 4 z +  b, and H ( w )  can have any 
of the following forms: 

cosech(w), sech(w), sec(w 1, tan(w), tanh(w), coth(w), cn“(w, k ) ,  

tn(w, k), [e4+f4 cn2(w, k)]’”, sn(w,  k ) ,  

[e4+f4 sn‘(w, k ) ] ” ?  
cn(w, k )  

( e4+f4 cn(w, I C ) ) ” ?  

, [ e ,  cn’(w, k ) + f ,  sn’(w, k)]’”, 

, [ e , + f , ~ e c ~ ( w ) ] ‘ / ~ ,  [e4+f4 sech‘(w)]’ ’, 
1 +cn(w, k )  

[ e 4 + f 4  c o ~ e c h ~ ( w ) ] ” ~  

and g 4 ( w )  is determined from the form of H ( w ) .  
( U )  Angle-dependent multivalued solutions 

CL(c t )  = CL0p-’B(R) exp[i(c5t+g5(R))].  

Here the symmetry variable is R = a,B + b5 and B(R)  may have th followin forms: 

and g s ( w )  is found from the particular functional dependence of B ( R ) .  
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In  cases ( i ) - ( v )  the parameters a,, b,, c , ,  d , ,  e,, J ,  h,, ( i =  1 , .  . . , 5 ) ,  CL,,, b, a are 
constants which are not in general arbitrary. They are determined from the original 
PDE and  are functions of the constants given by Gagnon and Winternitz (1988, 1989a, b)  
and Winternitz et a1 (1987) who specified regimes of applicability for each solution's 
constants. The reader should consult these latter papers for further details. In  the 
above cases, for a particular type of solution, i.e. 1 , 2 , .  . . , 5 ,  and each particular 
function of the symmetry variable, the constants e , , f ;  and h, will have different values 
and  are listed in the form given for simplicity. 

3.2. Minkowski signatures (-, +, +) 

Unfortunately, to the best of our knowledge, there exists no analogous analysis of the 
(3 + 1)-dimensional non-linear Schrodinger equation given by (12) for the Minkowski 
signature. A very simple-minded approach would be to replace those independent 
variables which correspond to a negative signature, e.g. xA, by ixl, and  subsequently 
substitute this transformation into the solutions obtained above. This will not, in 
general, generate all the solutions since the equation considered is invariant with 
respect to different symmetry groups for different signatures. It appears though, that 
only the subgroups of the symmetry group which involve dilation operators (scale- 
invariant transformations) will be different in the two cases of differing signatures. 
However, recent studies involving the non-linear Klein-Gordon ( N L K G )  equation 
(Winternitz et a1 1987, 1988, Grundland and Tuszyriski 1987) can be used to obtain 
special solutions in the present case. In  order to d o  this we represent the field as 

CL = r] exp(ix) (14) 
where r] and x are real. Substituting (14) into (12) and  separating the real and imaginary 
parts gives for the real part: 

(15) C f r ]  = 2[ YO+ hXt +;(c,x)']r] + F(,$ 
and for the imaginary part: 

h g , =  + t O i x * T ' , r ] + ~ ( C f X ) r ] = O .  (16) 
Equation (15) will become a cubic N L K G  equation if we require that 

hx, + ; ( C , X ) ~  = constant. (17) 
This latter requirement may easily be satisfied. This may be done, for example, in 
Cartesian coordinates if we put 

x = k x - wt + xo . (18) 

x = k,p + k,z + wt +xo (19) 

x = k,r - wt (20) 

Similarly in cylindrical coordinates a substitution of the form 

or in spherical coordinates 

will both enable (17) to be satisfied. Given that (17) holds, we now have to ensure, 
with the choice of ,y from (18), (19) or (20), that (16) is satisfied. The last term clearly 
vanishes anyway and  the first wiii also if the envelope is stationary. Thus, we only 
require the two gradients to be orthogonal and as V F 4  is a constant vector, C,r] will 
be a vector on a plane perpendicular to this. Therefore, if we choose r] to depend on 
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a set of spatial variables which d o  not overlap with those which x depends on, the 
scalar product of C,x with ' 7 , ~  will then always be zero. This, of course can be done 
for Cartesian as well as cylindrical and spherical coordinate systems. Consequently, 
( 1 5 )  becomes a one-, two- or three-dimensional N L K G  equation (for the carrier wave 
x depending on two, one or no spatial variables, respectively) and  a large number of 
solutions have been found in each of these cases, including localised solutions. 

3.2.1. 7'he one-dimensional case. In  the one-dimensional case the signature clearly 
plays no role and all the solutions have been listed in Winternitz et a1 (1988). They 
involve elliptic waves, both singular and non-singular, and their limiting cases, i.e. 
trignometric periodic solutions and localised solutions (sech x, tanh x) .  

The first integral of the one-dimensional version of ( 1 5 ) ,  takes the form 

07:  = A + B?' + Cq4 (21) 

where A, B, C and D are constants which, with the exception of A, can easily be 
related to those in ( 1 5 ) .  Equation (21) is formally integrated to give 

where x0 and 77,) are constants pertaining to the initial conditions and a, b and c are 
given by 

a = A / D  b = B J D  c = C / D .  

The solutions in ( 2 2 )  will vary according to the particular choice of values of the 
constants a, b and c and there are several regions where they assume the same functional 
form. There are four general cases depending on the signs of b and c. Within each 
of the cases the value of a determines the functional form of the solution and these 
can be represented by lines originating at points of intersection of the two curves: 

P( 7 )  = - a  Q ( 7 )  = bv'+ cv4 
and entering regions where the solutions are real. 

In figure 1 we have illustrated this description for the four cases c S 0 and  b 2 0 
and  in the different regimes we have indicated the type of solution one would obtain. 

3.2.2. Two dimensions in space. Within this category we have two subcases. The first 
is when the two spatial coordinates on which the envelope depends have the same 
signature. Here, the equation to solve is the N L K G  equation in E ( 2 )  space. The other 
possibility is, of course, when they have different signatures and we will be solving a 
N L K G  equation in M(1, 1)  space. We now draw on the results recently published by 
Winternitz et a1 (1987, 1988). For the case when 

2 [ ~ ~ + h ~ , + f ( V ~ x ) ~ ]  =cons tan t=  E " # O  (23) 

in (15 )  one finds the following reductions. I n  E ( 2 )  the symmetry variables may only 
be 

with the reduced O D E  in the form 
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Figure. 1. Graphical illustration of solutions to ( 2 1 ) .  Solutions take the form: ( a )  when 
b > 0, c > 0: ( 1 )  cn - ‘ I  x ) ;  ( 2 )  tn(x) ;  ( 3 )  [ (  1 + c n ( x  I ) / (  1 - cn(  x ) ) ] ’  ’; i b )  when b < 0, c > 0:  
( 1 )  c n - l i x ) ;  i 2 )  sn(.x);  ( 3 )  s n - ’ ( . x ) ;  ( 4 )  [ ( l + c n ( x ) ) / l  - c n ( x ) ) ] ’  ’ ; ( e )  when b < 0 ,  c < O :  
( 1 )  cnix) ;  i d )  when b > 0 ,  c < O :  ( 1 )  dn( .x) ;  ( 2 )  cn(.x).  

where A = 1 and  k = 1 or 0 for the two variables &, respectively. In M(1 ,  1) the 
symmetry variables allowed are 

to= ( I x ’ 1 y  €, =(.x:-x;,”z & = x, +x,. 

In all these cases the reduced O D E  is (24) with k = 1 for t,, and k = 0 otherwise. 
The parameter A is 1 for t1, and -1 otherwise. For Eo=O the symmetry group of the 
equation acquires scaling transformations in addition to the various rotations and 
translations present before. This results in a large number of new solutions. However, 
for cubic non-linearity only the Euclidean case has been exhaustively analysed and  
further work is in progress to elucidate additional solutions. In the former case the 
extra reductions are in table 3 following Winternitz er a1 (1988). This table is valid in 
the case where there are two or three spatial variables and thus for E ( 2 ) ,  6, in the first 
row is x:/x:. At present we d o  not have any results concerning M (  1, 1) reduction for 
the subgroups of the similitude group. The reader is referred to the paper by Winternitz 
et a1 (1987) for a complete analysis of N L K G  with quintic non-linearity. 

3.2.3. Three dimensions in space. Once again we make use of the previously published 
results and  present them in table 4. In this case E ,  f 0, and the various reductions 
occur in both Euclidean and  Minkowski spaces. In this table all the reductions listed 
lead to (24) and the values of k and A for each of the symmetry variables are provided. 
An important new feature is the existence of so-called degenerate symmetry variables 
which may depend upon arbitrary functions. The case with E ,  = 0 has been given in 



4908 J M Dixon and J A Tuszyn'ski 

Table 3. The results of symmetrl  reduction for ( 1 5 )  with E,,=O ( see  ( 2 3 ) )  in two- and  
three-dimensional Euclidean space where = u i x )  j ( f )  and  h =constant .  

u(xi f Reduced orit 

Table 4. Reduction of ( 1 5 )  with €,,F 0 for E ( 3 )  and  M ( 2 ,  1) (following Winternitz er al 
1987) ( p arbitrary).  

f k A 

1 

1 

1 

- 1  

- 1  

- 1  

-1  

-1 

table 3 for a Euclidean metric, and  unfortunately the Minkowski metric case has not 
yet been published when a cubic non-linearity is present. 

4. Solutions for the first-order case 

Assuming the two-body interaction's coefficient depends linearly on momenta, then, 
as has been shown in I ,  this leads to the following equation of motion for the classical 
field: 

iiia,4= v ,4+ iv i  . ( ~ , 4 ) - ~ ~ ~ 4 + ~ , ~ + 4 4 + 2 i v ,  .[4+4~,q5]. (25) 

Following (14) we represent the classical field 4 in terms of its envelope 7 and carrier 
wave ,y. When substituted into (25) and real and imaginary parts are equated this 
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produces the following two equations: 

:v:t, = [hXI + v,,- VI * rF ,y+ ; (TFx)2 ]q  +[ v2-223 * v J ] v 7  
hv ,  = (VI +2'q2V7) * c,v - (c ,q)  * r ' , x - f v C f X .  

(26) 

(27) 

These equations may be solved by imposing extra constraints, namely attempting to 
cast (26) into the form of a N L K G  equation for which solutions are known (see Winternitz 
et a1 1987, 1988). The simplest way of doing this is to require that x, and C,x are 
constants which yields, for x, 

x =  c K,X,+X".  
r = O  

Thus the carrier wave is very like a plane wave where, at this stage, the direction of 
propagation is arbitrary. Hence (26) takes the form of a time-independent three- 
dimensional cubic N L K G  equation: 

(29) v f v  = A~ + B~~ 

where 
3 3 

h K o + v o -  C V , , E , K , + ?  K f  
, = I  , = I  

and 

B = 2( v 2  - 2 Y ~ , E ~ K , )  
1 = I  

This still has to be consistent with (27). One method of accomplishing this is to demand 
that 

U, * 0,v = 0 (30) 

which clearly removes one spatial variable parallel to the direction of v 3 .  Equation 
(27) can now be satisfied in a non-trivial way by choosing v to have the functional 
dependence 

~ = ~ ( X I - U I t r X 2 - U 2 t )  (31) 

where x I  and x2 are two linearly independent coordinates in the plane normal to the 
constant vector v3 and u I  and u2 are constant velocity components adjusted so that, 
when (31) is introduced into (271, it is identically satisfied. The result ofthis procedure 
is the N L K G  equation in two spatial dimensions corresponding to (29). Once again, 
we refer to the recently published results of Winternitz et a1 (1987, 1988) and  a similar 
analysis which was given in 5 3.2.2 of this paper. In  addition to solutions like (31) 
which involve two independent variables and  lead to a two-dimensional NLKG,  one 
also finds reductions to an  ODE by using the single variables 

(1 = VI XI + V Z X Z +  et 

and 

( 2  = V 3 p  - ct 

where solutions become ~ ( 5 ~ )  and v(&) and represent plane waves in two dimensions 
or radial cylindrical waves, respectively. 
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The profiles of the envelope solutions for (29) represent, in general, Jacobi elliptic 
functions and have periods which depend on the integration constants (the latter may 
be fixed by imposing appropriate boundary conditions). Particularly interesting special 
cases are obtained for infinite periods and these are the well studied sech and tanh 
solitary waves. 

5. Second order 

Expanding the two-body interaction to second order in the momenta we find that the 
classical field 4 satisfies the following equation of motion: 

iAa,4 =p04+ipI  * ( ~ , 4 ) + 1 * ~ G : d - 2 ( C , 4 + )  4(VF4) 

+ P ? ~ + M  + 2 p 4  i4+4V4 + ( G f 4 + ) ~  + 4’4vf4. (32) 

We again represent 4 by 

d = q exp(ix) 

and  substitute into (32). On equating real and imaginary parts in the resulting equation 
we find 

P d C f d  - 2 q ( b l ) 2 + 2 7 7 2 c q  

= r l ( P r ( c , X ) 2  + PI - YFX - AX,) + 7?3(2(v,x)2 - P3 + 2P4 t , X  + 2 ( 0 , x ) 7  
(33) 

and 

hq,  = ( p I + 2 q z P 4 )  ’ C,77+2P2(0F77) * (KX)+PCL277CfX. (34) 

To solve (33)  and (34) we proceed initially in an analogous manner to first order. 
Equation (34) can be readily satisfied by demanding that x be a solution of (28) and 
q is an arbitrary function of symmetry variable(s) such that its gradient is orthogonal 
to p4 and its time dependence balances the right-hand side of (34). Having done this 
we proceed to solve (33). By virtue of equation (28) the coefficients of q and q 3  
become constants and the equation itself closely resembles a two-dimensional NLKG.  

Hence (33) can be transformed into 

where A and B are the constant coefficients of q and q3 appearing on the right-hand 
side of (33). Equation (35) is clearly of the form 

c’q = @ (  q, (Vq)?). (36) 
A class of such non-linear PDE of second order has been studied by Grundland et a1 
(1982), Cieciura and  Grundland (1984) and  Grundland (1984). Symmetry reduction 
analysis for this type of equation has been performed, assuming only that the symmetry 
variable 5 has the property 

( V t ) ’ = f ( O  

i.e. is constant on every level of the function 5. I t  is easy to see that this implies that 
0’6 also has this property and, perhaps more interestingly, an arbitrary function of .$ 
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has the same property as 6 itself, provided the function is invertible. For this class of 
equation Grundland er a1 (1982) found all the symmetry variables of codimension one 
in both Euclidean and Minkowski metrics. In  our case, of two-dimensional space, the 
only symmetry variables 6 for the Euclidean and Minkowski cases are listed in table 
5.  We also give the corresponding values of (G6)' and 0'6 and the parameters ( e  and  
K )  which appear in the reduced O D E  which, in all cases, takes the form 

where the primes denote differentiation with respect to the symmetry variable 6. We 
notice in table 5 that two thirds of the cases have K = O  so it is of interest to obtain 
solutions in this case as a n  example. This may easily be done by writing 

V ' = P  v " = p  d p l d q .  

Equation ( 3 7 )  then becomes 

where 

where we suppose p 2 + 2 v 2  # 0. By changing the dependent variable in ( 3 8 )  to W 
where p = W-' we find 

(39)  E d W I d T  = - g (  77 1 W' - f  ( 77 1 W 

which is a first-order Bernoulli equation whose solution may be written as 

(W)- '=(p2+277' ) [$B I n ( c ~ ~ + 2 7 7 ~ ) - C ] - ~ B ( 2 A / B - ~ ~ ) = ( d 7 7 / d 6 ) ~ =  F ( ? )  

where C is an integration constant. One further integration provides an  implicit 
solution in the form 

Table 5. Symmetry variables €, ( Y o 2 ,  Y'E, K and  E for (36) for the Euclidean a n d  
Minkowski cases in two-dimensional space.  
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The integral in (40) can be qualitatively analysed by looking for the roots r / ( )  of F (  r / )  = 0. 
If these roots are real they will appear in pairs at Tr/,,. The form of F (  7 7 )  admits only 
four cases: 

( a )  no real roots; 
( b )  two symmetrically located distinct single real roots; 
( c )  a pair of double roots; 
( d )  four distinct single real roots. 
Denoting p2 + 277> by z and i B  (2A /  D - pz)  by D we find 

F ( r / )  = G ( z )  = z [ f B  In z -  C ] - D  = O  ( z  > 0) 

or 

4 4 0  
z 1 n z = - Cz + - . 

B B 

Analysing the form of the solution in (40) in the immediate vicinity of a particular 
root, it is easy to conclude (by analogy with elliptic integrals) that localised solutions 
~ ( 6 )  can only exist when the corresponding root is a double root whereas periodic 
solutions occur between two single distinct roots. Case ( a )  above leads to singular 
solutions only. Cases ( b )  and ( d  ) give periodic solutions which correspond to regions 
of 77 between two real roots such that F (  7 7 )  2 0. The most interesting case is that of 
( c )  and i t  is indeed possible whenever 4 D / B < 0 ,  in which case the double root is 
located at z =  -4D/B and this implies that the integration constant C = 
f B  In 14D/BI + 1 .  Having a pair of double roots we obtain a solution which interpolates 
between them as 6 varies from -cc to +%. This therefore can be interpreted as a 
kink-type solitary wave. Note also that should 4D/  B be greater than or equal to 0 we 
could still formally have a quadruple root at 77 = 0 but this would mean an infinite 
integration constant C and the solution itself would become singular at (=  to. The 
solution in (40) is clearly an  asymptotic solution for the case K = 1 ,  corresponding to 
the case 6 + m .  Moreover, expanding a solution r/ of ( 3 7 )  for K = 1 around a constant 
solution (mean field envelope) leads to a modified Bessel function equation for the 
small perturbation. Thus, the latter exhibits damped oscillatory behaviour. 

For cases with K = 1 ( 3 7 )  is much less amenable to exact solution. However, there 
are a number of transformations which may be applied to cast this equation into a 
form easier to analyse. For example, setting the independent variable to U = A In 6 so 
that 

7) =y(A In 6) 
results in an  equation of the form 

where primes now indicate differentation with respect to U and 

Assuming y’  # 0, (41) may be divided through by y’ and directly integrated with respect 
to U in the limit when A -,a when the first term may be neglected. This produces 

(43) y ’  = ( KopZ + 22.’)’ ’’ 
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where K O  is an integration constant. Equation (43) is separable and its integration yields 

with ug an integration constant. 

6. Quantisation procedure 

It is well known that in critical phenomena classical effects are by far the most dominant 
sufficiently close to a critical point, so classical solutions are an  extremely good 
approximation. First-order quantum corrections are then of relative magnitude h and 
can be treated very accurately in a perturbative manner (Amit 1978). 

We are aware of the existence of a number of papers where the non-linear Schrodin- 
ger equation is considered from a quantum viewpoint using, for example, the inverse 
scattering technique (Alonso 1984,1987, Konishi and  Wadati 1986, Wadati and Kuniba 
1986, Wadati et a1 1985). However, all these calculations involve one-dimensional 
equations and  therefore would only be applicable to a small fraction of the situations 
presented in this paper. In order to study quantum mechanical effects we shall adopt 
a different approach, namely the standard approach in quantum field theory (Jackiw 
1977, Rajaraman 1987) where, in the first approximation, quantum effects are ignored 
and  one solves classical field equations in the first instance as we have done earlier in 
this paper. Subsequently the effects of quantum mechanics are regained by quantising 
the classical solutions using several possible approaches. These could be carried out 
using a W K B  semiclassical quantisation, or discreteness could be obtained through the 
imposition of periodic boundary conditions, o r  by perturbing the quantum fields around 
their classical counterparts. I n  general, the classical solutions obtained can be grouped 
into four categories. 

( i )  Constant solutions corresponding to the vaccum expectation values of the 
quantum field and thus, when they become non-zero, signal spontaneous symmetry 
breaking in the system. 

(ii) Static (in their frame of reference), space-dependent solutions, which represent 
elementary excitations (when they are periodic) or localised condensate envelopes 
within which quantum states may eventually be bound. 

(iii) Time- and space-dependent solutions which correspond to metastable excita- 
tions with finite lifetimes or unstable decay patterns. 

(iv) Kinks which describe quantum mechanical tunnelling phenomena. 
We shall illustrate the quantisation procedure by using the NLS equation in zeroth 

order, which was obtained in (12) ,  for simplicity. In principle the same approach can 
be used for both first- and  second-order equations as what follows is an elementary 
linearisation procedure. Starting with (12) ,  for the classical field, we remove the time 
dependence by substituting 

(45) 4 = ~ ( x )  exp( - i E r / h )  

to obtain 
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where Eo= E - vo. We shall seek quantum corrections in the form 

rl, = vo+ .I (47) 

where II, satisfies (46) while v0 corresponds to E = O .  Substituting (47) into (46), and 
linearising with respect to A,  gives 

-4Vf.I+3F0vi.2= Eo.1. (48) 

In the remainder of this section we illustrate this procedure with several important 
types of examples, namely elliptic function solutions of (46), hyperbolic, e.g. tanh and 
sech, and constant solutions. These exemplify three types of physical behaviour which 
are periodic, localised and mean field, respectively. Although the actual calculations 
will be in one dimension, extensions to other dimensions are readily constructed. I n  
fact, the one-dimensional results will also become the exact solutions in cylindrical 
and spherical cases in the asymptotic limit. 

6.1. Elliptic solutions of (46) 

Following Winternitz et a1 ( 1988) there exist three general types of non-singular elliptic 
solutions of (46). They can be obtained by integrating this equation, reducing it to 
quadratures, and comparing with standard forms listed by Byrd and Friedman (1971). 

(i) When E ,  = -1, the polynomial appearing in the first integral of (46) takes the form 

and when it has four distinct real roots F v l ,  T v 2  ( 1 ~ ~ 1 )  > lqll), then the solution can 
be written as 

vo= T v 2  dn[(-E,Fo)1’2v2(X, - x %  kl.  (50) 

Here, k =  (1 - v f / ~ : ) ” ~ ,  x,  is one of the independent variables and C and &, are 
integration constants. 

(ii) When E ,  = -1 and (49) has two real roots, T v , ,  and two purely imaginary roots 
* iv2 ,  the solution is 

(51) 
2 1 / 2  

To= 7771 cn{[-EFo(d+ 7 2 1 1  ( X I  - x 3 ,  k} 
where 

k’= q: / (v :+vi ) .  
( i i i )  When E ,  = $1 and (49) has four real roots T v l ,  T v 2  (1v21> lvll), then the 

( 5 2 )  

solution is 

v o =  r v l  sn[(ElFo)l”v2(x, -xp), kl  

where k = v l /  q 2  
For a graphical illustration of these solutions see figure 1. 
These solutions will provide effective potentials for quantum fluctuations as given 

by (48). However, the subsequent analysis can be done jointly for all three cases since 
the potential is proportional to v i  and one can use the well known identities: 

s n 2 ( x ,  k)+cn’(x,  k ) =  1 

k2 sn(x, k ) + d n 2  (x, k )  = 1. (53) 
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I t  is easy to show that all of these cases lead to the equation 

d ' , i / d a ' = ( a + h s n ' ( a , I \ ) ) i  ( 5 4 )  

where the constants a and  b and the independent bariable Q are listed in table 6 .  
Putting b = n(  n + 1 )  k ' ,  this equation takes the Jacobian form of the generalised Lame 
equation. There are two other forms of this equation (see Whittaker and Watson 19631, 
namely the algebraic form 

( 5 5 )  
[ n ( n + l ) f + B ] . 1  

4 ( f - e , ) ( 5 - e 2 ) ( f - e , )  

and the Weierstrassian form 

d'.I/du'= [ n ( n  + 1 ) P (  U )  + Bl.1 (56) 

where B is related to a in ( 5 4 )  by 

B + e 3 n ( n +  1) = a ( e ,  - e 3 )  

and P ( u )  is the Weierstrass P function. 
I f  n is a positive integer there are 2n + 1 values of B for which ( 5 6 )  has a solution 

which can belong to any one of four species. When one of these solutions is expanded 
in descending powers of 5, the coefficient of the term in being taken as unity, the 
function obtained is called a Lame function of degree n of one or other of the four 
species. The Lame functions are usually denoted by E::'(&) where m = 1 , 2 ,  . . . , 2 n  + 1. 
Inserting a series solution of the form 

x 

.l= 1 b , ( f - e , ) l " - '  
r = O  

into the algebraic form of Lame's equation gives a recurrence relation among the 
coefficients b, each of which is a polynomial in B of degree r. Whittaker and Watson 
(1963) have provided expressions for the coefficients of B' and also their sign. I f  such 
a series terminates, e.g. if n is even and b!,,,, = 0, then all succeeding coefficients vanish 
and B is a root of an algebraic equation of degree f n  + 1 .  There are :n + 1 real and 
distinct values of B when n is even and i ( n  + 1 )  when n is odd. 

The fact that for each value of n there are 2n + 1 values of m which provide a 
solution, E r ,  is very reminiscent of spherical harmonics in a spherical potential and 

Table 6. Independent bariables a n d  constants f rom each o f  ( S O ) ,  ( 5 1 )  and ( 5 2 )  which 
appear  in (54). 

Case a n h 

- 2 E .  F,,  
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angular momentum quantisation. When equation (54) has periodic solutions they may 
be designated in the form 

sn a,  cn a d n a ,  
1, cn a, dn  a sn a,  sn a cn a dn a (sn' a -sn' a,,). (57) i dn a, sn  a c n a ,  I P  

Each of the columns inside { } of (57) denotes a species, by analogy with the four 
species of ellipsoidal harmonics. Each of the eight prefactors in ( 5 7 )  may multiply 
the product on the right. The a,, are constants. 

Complete solutions for an arbitrary value of B (which is to be fixed by appropriate 
boundary conditions) may be written 

where m and 6 are the sigma and zeta functions of Weierstrass where [ is defined by 

d j ( z ) / d z  = -P(z) 
and should not be confused with the zeta function of Riemann. In contrast to the 
solutions of (57) those in (581, obtained for arbitrary values of B, may contain damping 
factors or indeed may be singular. 

6.2. Hyperbolic solutions of (46) 

I f  -vo/ F, > 0, then for special choices of the integration constant C one can obtain 
localised solutions of (46). These correspond to the limit of elliptic functions when 
the Jacobi modulus k + 1. There are two different types of these solitary waves, namely: 

( i )  for E = + 1  
I ,  2 

tan h[ ( - v~,) " ?( x, - x:')] 

and 

( i i )  for e = -1  

sech[(-2vl,)' '(x, -xp)]. 

(59) 

Substituting (59) and  (60) into (48) leads to two eigenvalue equations for the two 

(61 1 
cases ( i )  and  ( i i )  which both have the form 

-d'A/da'+[(L'-  U ; )  - L ( L  + 1)  sech' a ] A  = 0 

and  in both cases L = 2 and v(, is negative but in case ( i ) ,  

Ly = ( -v ( , ) ' I?( .x ,  -xY) U:  = 2En/ /uo /  
and in case (ii),  

a = ( - 2 v " ) " ? ( x , - . Y : )  w:=3-€,,/ l~ol.  (626) 
This type of Schrodinger equation has been studied extensively, for example, by Morse 
and Feshbach ( 1953) and  explicit solutions exist involving hypergeometric functions 
F, i.e. 

(63) .I = ~ o s h - ~ ( a ) F ( K  +3, K + i - $ I K  + lle"/(e" +e - " )  
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where K = (4-w;). The solution in (63) is a well behaved function (finite as a + -CO) 

as long as K - 2  is a negative integer. This leads to quantised energies, i.e. i n  case ( i )  

and in case ( i i )  

and  n = 1 , 2  in both cases. Solutions corresponding to higher eigenvalues form a 
continuous spectrum, are unbound and take the form exp(ina) multiplied by a Jacobi 
polynomial in tanh a (Jackiw 1977). 

6.3. Trigonometric solutions of (46) 

The elliptic solutions given in ( 5 0 ) - ( 5 2 )  can also be examined in the other limiting 
case, namely when k + 0. This is obtained for dnoidal waves when q2+  q ,  and gives 

dn(  U, k)  = 1 - (k’ sin2 u ) / 2 .  

Similarly for cnoidal waves this type of solution is obtained when 7, - 0  and 

cn( U, k )  = cos U + k2 sin U( U -sin U cos u ) / 4  

whereas for snoidal waves q ,  + 0 also and we can use 

sn( u, k )  = sin u - k’ cos U( u - sin U cos u)/4.  

It should be mentioned that the amplitude of all these oscillations will vanish in the 
actual limit k = 0. For small k, but k f 0, we could estimate the importance of quantum 
fluctuations with the above approximate formulae or simply look at the small-k limit 
of the eigenequation (54) which is common to all cases. This gives us a Mathieu 
equation 

d’.\/da’+ [ - ( a  + i b )  + i b  COS 2al.I = 0. 

There is a vast literature dealing with this important equation which, because of its 
effective periodic potential, leads to Bloch-like eigenfunctions and the formation of 
allowed and  forbidden bands. The eigenfunctions are the various Mathieu functions 
and  for a more detailed exposition the reader is referred to the work of Erddyi (1953). 

6.4. Constant solutions of (46)  

When k = 0 these solutions degenerate into constants and  hence on substitution into 
(54) one obtains 

d’.i/da’= a.\. (65) 

The stability properties of the mean phase are determined by the sign of a (i.e. a > 0 
unstable and a < 0 stable). Obviously, when a > 0 and large in magnitude a solution 
possesses an exponential divergence whereas when a < 0 one obtains oscillatory solu- 
tions. 
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7. Conclusions 

This paper has been devoted to the study of both classical solutions and  their quantum 
corrections for the field equations describing the behaviour of strongly interacting 
many-body systems at criticality. 

In  the non-interacting regime we have found classical solutions in the form of 
oscillatory, damped and  exponential functions in planar, cylindrical and spherical 
geometries. However, the important feature of this order of approximation is that no 
localisation phenomena were found. In the zeroth-order case a wealth of solutions 
have been found based largely on the complete symmetry reduction analysis for the 
Euclidean signature. Spatially homogeneous, quasi-linear, cylindrical and multivalued 
solutions have been found with a variety of functional forms which were often given 
by Jacobi elliptic functions. We have also found special types of solution in the 
Minkowski signature through an ansatz related to the Klein-Gordon equation. An 
important point in this order of approximation is that infinitesimal symmetry conditions 
result in a finite number of geometries in which solutions can be obtained. Moreover, 
this is the first stage at which localisation can be found (as a result of the presence of 
non-linearity). 

In  first order we have found special solutions whose carrier waves are of plane 
wave type and  the envelopes are given by either plane waves or cylindrical waves 
propagating along the direction normal to that of the carrier wave. Generally the 
envelopes are expressed in terms of elliptic functions. 

I n  second order we have performed a reduction to a two-dimensional equation 
which can be viewed as a special case of the non-linear Klein-Gordon equation. The 
analysis of its solutions indicates a clear possibility of localisation. 

The last part of this paper has been concerned with quantisation of these classical 
solutions. Since the method presented studies the physical system in the vicinity of 
its critical point one expects classical behaviour to be by far the most dominant (Amit 
1978, Ma 1976). Quantum effects can be obtained, to a very good degree of approxima- 
tion, by linearisation about the classical solutions. To this end we have applied a 
standard field theoretical procedure and investigated the quantisation derived from 
the classical zeroth-order solutions. Only one-dimensional examples were used to 
illustrate the procedure. We see no great difficulty in extending this to higher 
dimensions. In fact, the results obtained in one dimension give the asymptotic depen- 
dence of those in higher dimensions. We have found that localised solutions give rise 
to low lying bounded excitations and a high-energy continuum of states. Periodic 
solutions, on the other hand, lead to the formation of both allowed and forbidden bands. 

Finally, we would like to comment on the possible consequences of the existence 
of both localised and extended classical solutions. In  the finite-volume case the energies 
of the elliptic wave solutions become infinitesimally close to their localised limiting 
cases (when k -+ 11, i.e. to the solitary waves. With a negligible energy change one 
could therefore cross a boundary between localised and extended states which is called 
separatrix crossing (Zaslavsky 1985 ). This may have important implications on  the 
range of existence of chaotic properties in such systems. 

The question of apparent arbitrariness in the obtained geometries for multi- 
dimensional PDE can be resolved very simply by demanding a particular form of the 
boundary conditions. These can be given in a natural way by the form of the physical 
system considered, e.g. a cubic crystal lattice, a magnetic spherical microparticle, etc. 
Once these conditions have been imposed and the reduction to an  ODE found, the 
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solutions of this equation may be required to satisfy subsequent periodic boundary 
equations in the reduced space. This would then bring about discretisation of the 
allowed frequencies for oscillatory solutions, very much like semiclassical quantisation. 
Clearly the geometry of the physical system is reflected in both the classical field and  
the quantum elementary excitations about it. 

I n  particular applications where the physical system has a conserved number N 
of particles there is an  extra constraint to which the obtained solutions should be 
subjected, namely 

$'4 d'x = N .  I 
This may lead to the possibility of analysing non-equilibrium phase transitions such 
as occur in, for example, lasers or even living systems, where the number of particles 
may be time dependent as a result of external pumping. We hope to investigate this 
problem in a future publication. 

In conclusion i t  appears that the wealth of solutions obtained is a clear indication 
of their potential use in a very wide range of systems in condensed matter physics. 
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